

Theme: Clinical

Abstract No:. PTCOG-AO2025-ABS-0076

Abstract Title: Evaluating the impact of robust treatment planning on Single-Field Optimization (SFO) and Multi-Field Optimization (MFO) using proton therapy in left-sided breast cancer with internal mammary node chain involvement: A pilot study

Author Names: Chun Lok Law¹, Yuan Jing²

Author Affiliations:

- ¹ Department of Radiotherapy, Hong Kong Sanatorium & Hospital, Hiong Kong
- ² Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, Hiong Kong

Background / Aims:

Advanced techniques like intensity-modulated radiotherapy (IMRT) and volumetric-modulated therapy (VMAT) deliver high radiation doses to organs-at-risk (OARs) in left-sided breast cancer patients with internal mammary node involvement. In contrast, proton therapy (PT) uses the Bragg peak for improved target coverage and reduced OAR toxicity. This pilot study compares Single-Field Optimization (SFO) and Multi-Field Optimization (MFO) methods in terms of target coverage, OAR sparing, plan robustness, and linear energy transfer (LET) deposition.

Subjects and Methods:		Target Dose	
•			Criteria-Goal
Aspect	Details	Breast/Chestwall CTV	V95 >=95% Dmax<= 110%
Поресс		Lumpectomy CTV (Mastectomy Scar CTV-For ref only)	V95 >= 95% V110% <=5 %
Patients	15 with left-sided breast cancer and	Axillary & supraclavicular CTV	V95 >= 95% Dmax <= 110%
	internal mammary node involvement	Internal mammary nodes CTV	V90 >= 90% Dmax <= 110%
Center	Hong Kong Sanatorium & Hospital	OAR constraints 15frs	1st Priority
100		Ipsilateral Lung	V16Gy <= 159 V8Gy <= 35% V4Gy <= 50%
Period	2021 - 2022	Contralateral Lung	,
Target	Whole breast, axilla, supraclavicular,		Dmax < 40Gy
Volumes	IMN		Dmean <= 1.5 V16Gy <= 5% V8Gy <= 30%
(CTV)	IIVIIV		V16Gy <= 0% V8Gy <= 10%
Planning	Day Station	Contralateral Breast	Dmean <= 5G
System	RayStation	Spinal Cord	D0.01cc <= 72
	40.5 Gy RBE in 15 fractions (Gantry	Larynx	Dmean <= 30
Prescription	10° and 40°)	Oesophagus	D1cc <= 29Gy D0.01cc <= 90
Coverage Criteria	NRG RTOG 1005 protocols	Rib Cage	D0.03cc <= 95 V50% <= 30cc
		Humeral Head (Ipsilateral	D1cc <= 25G D0.01cc <= 7
Fuelustion	Dose-volume parameters, OAR	Skin/Skin SCF (5mm Lumpectomy / 3mm Mastectomy	D1cc<=96%
Evaluation	doses, robustness analysis, LET contributions	LAD/RCA	Dmax <= 170 Dmean <= 70 V15Gy <= 10
		Table 1. The target dose and O	ARs crite

Table 1. The target dose and OARs criteria for PT breast planning in left-sided breast cancer with lymph nodes involvement.

Result:

Nominal plan comparison:

- •SFO plans showed significantly better hotspot control (lower V105%) in the CTV IMN compared to MFO plans (p=0.018).
- MFO plans showed significantly better homogeneity (lower HI) in the CTV compared to SFO plans (p=0.038).
- •MFO plans exhibited significantly better sparing of the heart, LAD, lungs, contralateral breast, and oesophagus compared to SFO plans (p<0.05).
- •SFO plans showed significantly better sparing of the rib cage D2% compared to MFO plans (p=0.020).

Plan Robustness:

- •MFO plans had significantly smaller variations in CTV coverage (V95%, D98%, Dmean) under uncertainties
- compared to SFO plans (p≤0.013). •SFO plans had significantly smaller
- variations in CTV IMN hotspot control (V105%, D2%) under uncertainties compared to MFO plans (p≤0.042).
- •MFO plans had significantly smaller variations in heart, LAD, and lung doses under uncertainties compared to SFO plans (p≤0.011).
- •SFO plans had significantly smaller variations in rib cage and oesophagus doses under uncertainties compared to MFO plans (p≤0.024).

LET Deposition:

- •SFO plans had significantly lower relative volumes of high LET (>6 keV/µm) in the rib cage and oesophagus compared to MFO plans (p≤0.017).
- •MFO plans had significantly lower relative volumes of high LET in the heart and left lung compared to SFO plans (p≤0.013).